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A natural extension of Isaac’s formulation [l] leads to differential games which 
are described by differential equations with aftereffect and as regards information 

are determined by information on the whole prehistory of the game. In this paper 
relating closely to the inv.estigations in r2 - lo], the emphasis is on the proof 

of the existence theorem for the value of the differential game in such an extended 

formulation. We examine a differential game of prescribed duration with a pay- 

off given in the form of a functional on the game’s trajectory. The differential 

game is approximated by a certain family of multistage games. We consider two 

sequences (minimax and maximin) comprised of the minimax and the maximin 
values of the payoff in the multistage games. Conditions are obtained under 

whose fulfillment these sequences converge and their limits are equal. The proof 
of the convergence of the minimax and maximin sequences is carried out by a 

scheme suggested by Fleming CL]. The proof of the equality of the limits of these 
sequences is based on the results of Krasovskii and Subbotin [S, 91. 

1. Let X be a Euclidean space, 1’ and 0 compact subsets of X. 10, 6 1 a specified 
time interval, C 10, ~1 the collection of functions x 7 z (s) continuous on [O, ~1 

Let f be a function, continuous on P ‘.: I’ ‘< Q , with a range of tne values in X. 
F be a functional continuous on C [O, s]. The sets I-‘, Q are the players’ control regions. 
6 is the prescribed instant of the game completion and f is the right-hand side of the 

equation of motion 

J..’ ( > = f It, 5 (s : 0 < .s < t), IL, u] (I( E P, 0 E Q) (1.1) 

Player I, having the control u 5 I’, strives to minimize the value of the payoff 
functional E, player II. with control u -5 0 at his disposal, pursues a contrary purpose. 
The players know the function Iv the sets I’, Q, the functional p , and the instant ti 
of the completion of the game. Both players are given full information during the game: 
at each current instant t they are informed of the value of the variable t and of the 
portion x (s : 0 G s < t) of the trajectory realized by this instant. 

The following requirements are imposed on the function f, the sets I’, Q , and the 
functional F : 

174 



1. For a fixed p c i’ , for any e f- X , 

min rnaz ef [p, 71, u] = rnax mirief [p, u, V] 
UEI I’EQ r,CJ UEI’ 

2. For every p ,y 1’ the sets f lp, f’, VI, f Ip, II, 01 are convex. 

3. There exists K > 0 such that 

for all t r-1~ IO, 61, y (s), z (,s) c: C IO,lY], II E P, 2: Vr Q. 

4. The function j is continuous on 1’ f’ >. Q in the sense that 

/ Lt,,, J’,, (< : 0 <s sg t,,), II?,, 27,,1 -~ / [t, .I’(s : C) < s ,( t), 11, ul 
as 

t,, - ’ 1, 1) x, (s) - .x (s) /IO 3 0, II, - I u, un .--> v. 

5. There exists ;“If )> 0 such that j/ f 11 < _! on p X P >’ 0. 

6. There exists 1, /‘- (1 such that 

(I; ly (s : 0 < s < S)] - b’ lz (s : 0 < s < a)1 1 < L // y (s) -- z (s) 11 8 

for all y (d, 2 (4 E c IO, al. 
Such is the informal description of the differential game I? being analyzed. However, 

a direct investigation of the existence problem in the continuous differential game meets 

with insurmountable difficulties connected with the necessity of restricting the players 

to such behaviors 11 u It, z(s:O,(s<t)], v--c/t, z(s:O,(s<t)l which 

would guarantee the integrability of Eq. (1.1). These difficulties can be overcome by 

going to a discrete formulation. Here the original differential game is approximated by 

a certain family of multistage games. Two sequences (minimax and maxim’n) comprised 

of the minimax and the maximin payoff values of the multistage games are considered. 

If these sequences converge to some common limit, this limit value is called the general- 

ized value of the original differential game 1 

2. Let 2 be the collection of coverings of the interval [(I, S] by a finite system of 

contiguous intervals [tt_i, ti] 
0 = to< t,< . ..< n= 6 

Let a be the general element of set 2, 1 (3) be the number of intervals [ti-t, tiI in 

covering 5. j 5 1 be the largest of the lengths Ai = ti - t i-1, l’i _ E’ [tiJ. Let A, 

B be arbitrary sets. The collection of single-valued mappings of set n into set B is de- 

noted [A ---t Bl. 

Let us formulate the definition of the family {r, : 0 F 2 } of multistage games l‘, 

by which the original differential game 1‘ is approximated. The multistage game 1’, 

of duration 1~ 1 (‘5) stages is described by the equation 

.I’ (t) ’ ,~(ri~l) (t - t,.~l)f Itj-1, S-(S : O(S ~ ti_1), 7Ii? U,l 

(t’r-(/i-13 tily 7Ii’Y /‘, Ui ‘0, 1 <i<TZ) 
(2.1) 

The payoff is given by the functional /‘. Player I, having the control u E 1’. strives 

to minimize the value of functional F; player II, having control c (_:- Q at his disposal; 

pursues the contrary purpose. The players know the function f, the sets l’., v, the cover- 

ing 3 and the functional F. Both players are supplied with full information during the 



game: at each stage i they are informed about the position (t,-r. x (S : 0 < s <’ 
< ti-l)) realized by the instant of this stage. This information permits the players to 

shape their own behavior in the form of the functions 

/Ii ; Iii [ti_l, ~ (S : 0 ~:S~. tier)] ~ [pi-l --> “1 

vi y ui l~-l, x (S : o < s < ti-I)] E lpi-1 --> Q] 

The sequence {ui,. . . , u n} ({ L$, . . . , u n}) of such functions is called the strategy of 

player I (II). 

Together with r, we consider the multistage games I’,*. The majorant l’af (minorant 

r,-) is defined analogously to I‘ O with the only difference that here at each stage i 

the second (first) player chooses his own current control having already been informed of 

the choice made by his opponent. The strategy of 1 (II) in I‘,+ is the sequence of mapp- 

ings 
ui ty [I’~_~ --_) P] (ui .Y [Pi_,xZ’-+Q]) (1 ,<i -<II) 

The strategy of 1 (II) in TO- is the sequence 

ui~ [lJim,xQ -->I’] (vi kz [Pi_,-->Q]) (1 i ,:/I) 

In the continuous formulation, to the game r3+ (r’,-) there corresponds the differential 

game r+ (I’-) with the first (second) player having discrimination [ll]. 

We see that the minimax value of functional F in game I‘,’ 

coincides with the minimax value of I*‘in game f’,’ 

rnln . . . 1111 u 
11 Ii [ P”-+Pl u,EIP,,_r’Pl 

mas . . . ma x k’ [X (S : 0 <s < ql 

I~,E[I’,,(X)P4] l\,EIPn_r(X )P-+Ql 

We denote this common minimax value by I.,+ =m I’,+ (~a). The maximin payoff value 

common for games I‘,, 1’0- is denoted 1/,- - k’,- (x0). 
Let us agree to denote arbitrary functions from c IO, ~1 by E/ (2) or z (1): keeping 

the notation z (t) for the trajectories of Eq. (2.1). We set 

V;\Lr,+ = rnin mas . . niin rrrax, VA],,- z mas min . . . maX niin 
UlEP I,Er) U,;EP l.$j ?‘EcI UlEP rkEV Uh.EP 

\~:zI,+ = V*lI,, r 

Theorem 1. Let Conditions 4 - 6 be fulfilled. Then in the games rO’ there exists 

a saddle point, and the values I’o7_ of these games satisfy the relation 

V,’ (x,,) = VAL,’ P~s(.s:0~,s~lY)~ (n = 2 (5)) w4 

Proof. The reasoning is based on the consideration of the funtions V$i (0 < i d n) 

defined by the recurrence rela tionr 

V~~,[y(s:O~~~~~)]=Fly(s:O&s~~)1 
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‘,$i-llY (‘: O < ’ < fi_l)l = VAL+V& [y* (s: 0 < s < ti)] 

where Y, (I) = y, (t; u, v) is a continuous prolongation of the function Y (1) E C[O, ti_lI 
on the interval 10, fi], given on [ $_r, tiJ by the formula 

y* (t) = y (t&r) + (t - t&r) / 1$-t, Y (s: 0 < s < ri-11, u, VI 

By the very same inductive scheme by which the proof is carried out of the Zermelo - 

Neumann existence theorem in positional games [12], we convince ourselves that V$i 

[y(s : 0 < s $ ti)] is the value (payoff) of the game I’,’ corresponding to the position 
(fi, y(S : O< S < 4)) as the initial position. The payoff VOf$ is simultaneously the mini- 
max and the maximin value of the payoff in I$s. Therefore, V&[zJ = V,$(z,). Now 
(2.2) ensues from the definition of the functions V& 

3. Here, after a number of auxiliary assertions, we establish that when Conditions 
2 - 6 are fulfilled there exist the generalized values 

V’ (z) = lim V,+ (z) as joj-+O (3.1) 

of the differential games r*. 
Lemma 1. Let rp,, (pa be scalar functions, continuous on (P X Q)k. Let a be 

the maximum deviation 1 ‘pl - q)pz 1 on (P X Q)“. Then 

[ VAL,*t-rP, @I, VI, . . ., uk, Uk) - VAL&‘, (*) ) < a 

For k = 1 the proof of the lemma is immediate [13], while in the general case it is 
achieved by induction. We say that the covering 5’ E 2 contains the covering o E 

E Z ,if every interval [ li_lr .$I E 5 can be represented as the sum of ni > 1 of 
intervals [ti,i_t, ti,jI E 3’ in such a way that 

ti-t = ti, 0 < ti, r < . . . < ti, mi = ti+l (1 < i < n = l(5)) 

a. -t... 2, 1 
+ hi, ,ni = Ai (hi, j = ti, i - ti, i-1) 

m,+- . . . -+- m, zz m _- 1 ( 5’) 

Let 5’ 2 ‘5 .Consider the function 

%J*. &J(s: O<s<S)] = F[1/(;: 0 <s<fis)] 

V,$.*, i-t [y (S : 0 <S < ti-,)l = VAL-AiVayg’, i [J/* (~1 0 < s < ti)] 

Here and subsequently y* (t) = y* (t; ut, L+,..., 

tion of the function y (t) E C [O, ti_lI 
Urni, Urni) is a continuous prolonga- 

on the interval [O, ti] defined on [tt-1, 

li] by the formula 

Lemma 2. Let Conditions 3 - 6 be fulfilled. Let 5’ 2 s.Then the functions 

V~,,,,i satisfy a Lipschitz condition on C 10, til with the constant LeK8. 

Proof. Let us show that for each 0 :<i <?z 



1 r, (ir . jl!,(s: ii -:;s ‘: till -- “,‘I (r‘. i  1’. (r: ii ,.-- _ s ; till \< n i /; !, (.v) -- z (.s) fllj {.3.?!) 

where 

n li = L, ai_ = (1 + IiA ;) n i’ I,<i ~:il (Xi) 

This is true for i =L n. Reasoning inductively, we assume that (3.2) is valid for some E. 
Under this assumption we prove (3.2) for i - 1. By Condition 3, for every t i_ [I~_~, t, 1 

1 

ii P 19 - z*(t)Ild]i~(~;_l)--"(ti_l)ii~ 2 hi,;li'!?/(s!--(.c)ijti_, = 

1c.i snzi 

= Ii ?f it&,) - x @_I) [/ -j- Aili /( y (s) - z (s) /jfi_l x.\ e- (2 -t h-h,) jj ?/ (.x) -- r. (v) /‘li_l 

From this and from the inductive assumption we find that 

I ‘$of, i 
[y*-(s: 0 < s f ti)] - 1‘; ~,, i [a* (s: 0 : s .::* till / < 

< ni Max {II Y I4 - z (4 il&_l* (I -t h’A,I !j !i (.q) - 5 (5) i!ii_l) = 

= ai (I $- h’Ail (, !i (s) - 3 (s) & 

for any (or, ul, . . ., umi, urni) E (P X Q)‘r’i. Tiie validity of (3.2) for i - 3. is explained 
by Lemma 1. Relation(3.2) IS established, All Ai > 0, A, -k . I . i_ A,, = 6, there - 

fore, as a consequence of (3.3) 

a ,-_ n i; Qn_l c, I * < f/cl = (1 + /i-Al) . . (1 +- K&j,) L < L (I _i- /itj / li)‘) < T,eK” 

Replacing ai in (3.2) by the constant t;erc8, we arrive at the lemma’s assertion. 
Let A (x) be the colfection of functions 2 (t) absoIutely continuous on [O, lY],con- 

strained by z (0) = 5, I/ z (t} 11 < M. By o (h, cc) we denote the maximum of the de- 
via tion 

if f @, 2 (S : 0 & s < t)$ 11, PI - f f-c: z (s : 0 sg s sz z), El, 4l 

over all 1 - ‘G j 5~2 h, 7: (s) _ : A (x), {u, 2:) -2 I” ?: 0. In accordance wim Condi- 
tion 4 the function o (k, z) is continuous on \O, 01 X _%. Furthermore, w (0, s) zzr 0, 

Lemma 3. Let conditions 3 - 6 be fulfilled. Let o’ =, O. Then for any 1: E XI 

1 I’,*’ (xf - I‘$ n’ (3) 1 cc Let 

Q z 2,1fprc@ j ; / ; [(4” - I) j Kf (5) (1 J” 1, X) 

Proof, Together with the trajectory z (t) of the equation 

’ ctf = ’ (‘i, ;_.I) + it _- ‘j, I -1) i iti, j-1: x  (“’ Cl G ’ < t;, j-1)’ ‘;, ,i3 uj, jl 

(6EIt,,I_,, ti,,jl’ E’i~j~-P1 “i,lEQ, l~i’,,?li, l,<i~fI) 

we consider the trajectory y (I) defined by the equation 

y it) = y @,_J -+it - f;_,) [zf in,* j i Ai) r’ fri_l, Y i.7: 0 .G .% G fi_& u,, i’ Pi, ,ji 
1’i... 7?zi 

(f <E &_** iii, I(;, i E P, Pi, ; FI7: Q, I $ i $ taf 

and the initial col.dirion ?/ (I!) z .c (“) Z-s I’~. On the basis of the inequalities 

/I j [I, 2 (s: 0 .< s < 1), I(, a] -_’ j [z, Y (s: 0 < s <r), u, VI II < 

<<!I[& s(s: o<s<r, k2)l - f l-c, z (s: 0 q s <z), u, v] II -+ 

-j-iij if, sfs: 0<4=cd), ZL, Bj -i ;r _ v<s: o<sc+ It, vj#< 

< irt (1 I -- z 1, zn) + K I! 25 (sf - 2 (b) ::+ (3.4f 
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II 5 (q - Y (t) II < 2M I t - z I + II x (t) - Y w II 
II 5 (4 - Y (4 ll$ < 2M I 6 I + oyill x Gj) - Y Qj) II 

it is easy to show by induction in i that 

max II 5 (ti) - Y (tj) II < bi (O<i\<n) 
o< j<i 

bo=O, bi=(l+KAi)bi_,+Ai[2KlllISl+O(lGl,zo)] 

(3.5) 

(3.6) 

We set 
ci (5) = bi / [ZK-nr I G ( + o (I 6 1, so)] 

Then the quantities ci (o) satisfy the recurrent relations 

co (5) = 0, ci (5) = (1 + KA> c~_~ (5) + Ai (1 < i < 1~) (3.7) 

These relations permit us to represent cJ1 (n)in the form 

c,(~)=(A1+...+A,)+K(AIAa+...+AIA~+ 

+ A?A3 + . . . + A,A, + . . + A,z_IAn) + . + Kn-'A,. An 

Hence c, (0)<cn (8 (n)), where u (n) is the covering formed from n intervals [ti_l, li], 

of same length Ai = 6 i n. Substituting Ai = 6/n into (3.7) we find 

c, (5 (n)) = [1 + (I+ K6 In) + . . . + (1 + K6 / #-‘I 6 /n = 

= [ (1 + K6 / 11)~ - I] K < (eK8 - 1) / K 

This leads to the following estimate: 

bn < I(eK” - 1) 1 KI [2Knl I G I + 0 (I Q 1, x01 

Hence, from (3.5), (3.6) and Condition 6 it follows that 

11 z (s) - y (s) JIB f 52, I F 11 (s : 0 < s < S)] - F [y (s : 0 < s < o)] < 02 

for any 

On the basis of Lemma 1 we obtain 

I V,‘; (x,,) - V; ,,, (z,,) I = I VAL$F [I (s: 0 < s <S)] - V24L; F [y (s: 0 < s f 8)] I( LQ 

The lemma is proved. 

We set 

2, (o)= (on: a”E2, Z(a”) = Z(0)) 

We denote the general element of the set 2, (0) by 0,. Let [T~_~, T~] be sequentially 

contiguous intervals comprising the covering Q* 

6i = ‘ti - Zi_1, p [5, 0.J = max 1 ti - zi 1 
O<i<?l 

Lemma 4. Let Conditions 3 - 6 be fulfilled. Then there exists a non-negative 

scalar function D ( 0, a*, X) such that for any a~ X 

1 K,+(x)- V,,“(x) 1 &LD(o,a,,s) (3.8) 
lim D(G, a,, x)< 2MeKB /G( (3.9) 

40, 0*1+0 

Proof. Together with the trajectory x (t) of Eq. (2.1) we consider the trajectory 

$/ (t) defined by the equation 
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y (j) = y ($1) + (t -T&J f I,&> y (s: 0 < s < zi_l), It i’ Vi] 

(t E [~i-l~ z,k 7~~ E p, gi E Q, 1 ~‘i; i < $7) 

and the initial condition y (0) = x (0) = zO. Using (3.4) jointly with the inequalities 

1 Ai - 6,j < 2p 15, c.J 

II r (4 - Y 6) Ilid G 2N I 6 I + d+IP [5, 5*] f max Ij zc (tj) - y (zj) 11 
04jGi 

by an induction in i it is not difficult to establish that 

max I] 5 ftj) - Y (aJ Ii G di (0 < i < nt 
o<j,Ci 

d,, = 0; di = (1 + KAi) $_I + Aito (p [G, ~~1, xo) + 

We set 
+ A,KM (2 Ia I + P [z, ~1) + ~JIP 1% %l 

If (5, G*, xo) = d, (5, “*> 20) + M (2 I G j 3 P is, $*I) 

Then by virtue of (3.10) and (3.11) 

II 5 (4 - Y(S) Ila ;i< D (53 6*7 4 

(3.10) 

f:r.il) 

(3.12) 

for all (u,, v1 ,..., un, vn) E (P X Q)“. From this and from Lemma 1 we derive (3.8). 
To be convinced of the validity of (3.9) we consider the quantities di* = di+ ((T) de- 

fined by the formulas 
d*=O 0 ’ di* = (1 + KAJ d;_t + 2A,KM I G 1 l.<i\(n (3.13) 

Comparing (3.12) and (3.13) and keeping in mind that 

(0 (h, ro) - 0 as 3,-O (3.14) 

we conclude that 

dn (3, z,, x01 - dn* ($1 for p [a, 5*] --+ 0 

Now (3.9) follows from the estimate 

dn*(5)<(eK8--f)2Mlal 

Lemma 5. Let Conditions 2 - 6 be fulfilled. Let O’ 2 0. Then 

t -,+ (x) > 1 -R, 0’ (4, I’,- (Lx-) sg Ii, 13’ (zf 

Proof, The inequalities 
v+ ,, I’+ *, z a.0’7 i’ v,, i < I’- 0, O’, i (5.15) 

are true for i = n. Their validity in the general case is established by the same induct- 
ive reasoning which Fleming employed to prove Lemma 3 in @I. When i = 0 the in - 

equalities (3.15) turn into the relations called for in the lemma. 
Theorem 2. Let Conditions 2 - 6 be fulfilled. Then the limits (3.1) exist and the 

convergence is uniform in 5 on every bounded subset of space X and the limit functions 
v(& satisfy a Lipschitz condition on Xwith the constant LeKB. 

Proof. Let 
z* (3) = fs”: >* E z, t (0 > l (s)), s* E z* (5) 

r, (5, 5*) = {5”: 5” E z, cj” 5 5*, E is") = l(5)) 

Let o* (o, o*) be an arbitrary covering from Z: (a, IS*), subject to the relations 
6* (3, a*) c, 5* (3.16) 

t (5*(5, 5*))= Z(5) (3.17) 
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p 10, 6, (5, a*)J = min p Ia, a”] 
a”Gqcl, 5’) 

(3.18) 

On the basis of Lemmas 3 - 5, (3.16) and (3.17), 

Vi* (5) < V,+ (2) + LQ + LD (a, 6* (a, a*), x) 

In the following three relations the limit in the left-hana side ranges over all o* E 

E z* (o),P*l - O.According to (3.16) - (3.18). 

limp [cf, o* (0, a*)] = 0 
Therefore, by virtue of (3. 9), 

lim !J& (5) < Ye+ (3) + LQ + 2LMeX8 ( cs I 

But for any fixed u E Z 

Consequently, for every 0 e Z 

E,,,,, V,+ (5) < Vo+ (5) + LS2 + 2LMeK’ 1 d 1 

However, in view of (3.14) the sum Q + 2 MeK” 1 u 1 tends to zero as 1 cr I -, 0. Hence 

lim Va* (5) < lim V,+ (5) 
bl-4 

- 
bl--@ 

By the same token the existence of the limit V+ (2) is established. The proof of the ex- 
istence of the limit Y- (2) is carried out analogously. The rest of the theorem follows 
from Lemma 2. 

4. Here we show that when Conditions 1 - 6 are fulfilled there exists a generalized 
value T’ = V+ = V- of game r. 

Lemma 6. Let conditions 1 - 6 be fulfilled. Then for each (3 E 2 the limits 

V (T, 0, i [y (S : 0 <s < ti)] = lim d’_Zb, I]b’+O~~0’, i [J/ (s : 0 <S < ii)] 

exist and are equal, the convergence is uniform in y (s) on every compact subset of 
the space C lo, ii], and the limit functions vO, i, 0 satisfy a Lipschitz condition on 
C LO, til with a constant LeK@. 

Proof. The lemma is true for i = n. Reasoning inductively, we assume that the 

lemma is valid for some i. Under this assumption we prove the lemma for i - 1. First 
of all we note that on the basis of Lemma ‘2 it is sufficient to convince ourselves that for 

every Y (s) E C [O, ti_ll the limits v0 0 i_l exist and are equal. Having fixed Y(S) E 
E C 10, ti_lly byB we denote the cofie;tion of functions2 (s) E C 10, til,each of which 
coincides with y (s) on lU, ti_ll while on lti_I, til are subject to a Lipschitz condition in 
a with constant M.We set 

EC= max IVo,o,i[z(s: O,<s,(ti)j -V$o, i 
z(s)~B I , 12 (s: 0 d s < $)] 1 

Then, according; to Lemma 1, the deviation 

I L&*,i-1 [Y (s: 0 < s < ti-J1 - VAL,. + “0, 0, i [Y* (‘)I I = z 

= 1 VALzi I$, i [Y* (-)I - VAL;, V‘,, 0, i [Y* (-11 I 

does not exceed E* 
Let us now consider, on the interval [ti_,, Q] a certain auxiliary differential game I’*. 



The game 1‘* is described by the equation X’ (t) = /* (Jlr 13 E f [ti_,, Y (s : (1 c; s < 
Q ti_l)r ZI, L.], u E P, L’E Q with initial condition 2: (fi_,) = ~1 (ti_ ,). The payoff in I‘* is 

the functional 
F* [?/(ti_,J, l(ti)] = I.o,n,i [<(s: o .:-s -:ti)] 

where g (t) is a prolongation of the function Y (t) E C (0, tr_,] onto the interval 10, 1,!, 

given on [ti_,, ti] by the formula 

5 (t) = ?/ @-I) + I(t - ti-11 1 Ail 1% (U -- !/ (&)l. 

Since I’* satisfies Conditions 1 - 6 and does not contain aftereffect elements, to it we 

can apply the results of [S, 91. On the basis of these results it is easy to establish that 

the limits lim VAL$, F* [y (li_,), r (ti)] E lim VALZ, I.,, “, i [.I-* (9: U x< s < li)I z 
* i 

3 lim VALL, VO, “, i [!I* (s: (J s : s _ ‘i)l 
1 

exist and are equal (the limits are taken over all o’ 2 o, / 0’ / - 0). Since by the induc- 

tive assumption et - u as 1 CT’ / --+ U, the limits l”“, (,, i_l also exist and are equal. The 

lemma is proved. 

Theorem 3. Let Conditions 1 - 6 be fulfilled. Then I-+ (z) = v-(Z). 

Proof. According to Lemma 3, for any Z’ 2 ; 

I q, (J) - L’,. (J) I ;: ! T.Ji+, oI (2) - v, j, (x) / + “/A! 

In correspondence with Lemma 6, considered for i = U, the deviation j V:, nI (x) - 
- Vi, os (2) 1 tends to zero as / IS’ j -ir 0. Therefore, by Theorem 2 the deviation! V’ (z)-- 

- V- (2) j does not exceed 2 L 62. Rut (1 -+ 0 when / o 1 + 0. Consequently,I/+(z) = l’- (2). 

5, Let M (N) be the collection of measures p (Y) given on a o-algebra of Sore1 

subsets of set, 1’ (Q) and normed on this set, 

p(/‘) == Jdp-- 1 (v(Q) = d’dv = I) 

We set 
< I 

/ I/,, p, YI == \ I I I/‘, I!, ul dpdv L t 

We denote the original differential game, considered in the mixed formulation [S, 91 

by G.In the mixed formulation the development of the game is described by the equation 

x’ (1) f Il. z (s : 0 < s < f), p, 2.1. ,‘L 5 Al, v *‘= N 

Thus, in (,’ the measures ]1 .y )\I, 2’ *: N are actually the players’ controls. In this 

connection we remark that the sets i\l, N are weakly compact (see [14], p.791) and 

convex. If in the definitions of Sect. 2 we carry out the replacement II, 21, f’, Q -+ 

-+ p, Y, 31, N,we arrive at the corresponding definitions for differential game G. We 

denote by (;;- the majorant and the minorant of the mixed multistage games correspon- 

ding to tile covering o := \’ The values of these games we denote by Us’. 

Theorem 4. Let Conditions 3 - 6 be fulfilled, Then in the games Gj’ there exists 

a saddle point, the values 1;; of these games satisfy the relation 

(TO (,r,,) I IT.\ l,,, ‘off’ ],z (s : (1 5< s 55 ii) 1 (li = i (5)) 

the limits 
1. (,l,) -: lilt1 I,‘; _ (.1.) 

/nl~rl 

exist and are equal, the convergence is uniform in .i’ on every bounded subset of space 

X, and the functions li:d- and their limit values Uf (2) I’- (.l,)are subject to a 
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Lipschitz condition on X with a constant I@a, 

3. Let conditions 2 - 6 be fulfilled. Then there simultaneously exist the generalized 

values V+ of the differential games r ’ and the generalized value U = U+ = U- of 

differential game G. It is easy to verify that these values are connected by the inequality 

V+ > CJ > V- Consequently, when Conditions 1 - 6 are fulfilled, V+ = U = V- = v. 

7, We consider the important particular case when the equation of motion (1.1) does 

not contain aftereffect elements, i.e., has the form 

Z’ (t) = f It, 5 (t), IL, VI (ZL E P, 7J E Q) (7.1) 

In this case it is of interest to elicit these additional conditions on the payoff functional 

under whose fulfillment the differentia I game with complete information on the current 

position (t, x (t)) h as a (generalized) value in pure or mixed strategies. 

A functional F is called quasi-additive if there exists a scalar function @(a, fi),con- 

tinuous on (- 20, oo) X (- 30, oo) possessing the following properties: 

@ (a, b) < CD (a, fl’) for all a, B<B 

F Is(s: a<s< b)] = 

=cD[(F(z(s:a<ss,(z)l, F[z(s:T<s<~)]) 

for all 0 < a < t < b < 6, x (s) E C [0, Ql kt h (x) be a scalar function, con- 

tinuous on X. Then the functionals 

F = h (X (6)), F = min h (X(S)), 
o<s<a 

F = i h (5 (s)) ds 
n 

are quasi-additive: in the first case @ (a. b) = p, in the second case @ (a, 8) = 

= min {a, b} and in the third case @ (a, p) = a f fi. 

Theorem 5. Let Conditions 3 - 6 be fulfilled, We assume that the functional F 
is quasi-additive and that the equation of motion has the form (7.1). Then in the games 

r3+ (Go+) there exists a saddle point formed by the strategies 

:zcr”, . . .) IL,“}, I%o, . * *, hoI 

(llhO, * ’ .f Pn% ho, * - ., vnO}) 

each component of which is independent of x (S : 0 < s < t _1) for i > 1 

The proof is obtained from the fact that under the theorem’s hypotheses the functions 

Viki can be determined by the formulas 

v~,~y(s:O~~~d)J=F[y(,~:O~‘sd)1 

V~~_l [y (S : 0 ~ s ~ ti_l)l = VAL*‘D (F [y (’ : O ~ ’ < ‘i-1)], ‘pi [Y* (’ ’ ‘i-l ~’ 6 ‘i)l)- 

(7.2) 

= (1) (F [y (s : 0 < s < ti_,)l ( VAL-tV$ [y* (s : $-I < s < $)I) 

This possibility, in its own turn, is explained by the equalities 

V$,, [.I,)] = VAL,fF [X (,Y : 0 Q s < 8)] (n = i (5)) 

which are easily derived from (7.2) and from the expansion 

F[~(S:~,~.~~<)]=4,(F[5(R:tn~S~~tl)]~("'~(~[~(":~~-_2\<~<'n-1)] 

F’[s (s : $-I < s < $,)I)- * *)) 



The author thanks G.K. Pozharitskii for attention to the work. 
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